Convolutional Network Codes for Cyclic Networks
نویسندگان
چکیده
Most data networks contain cycles, but so far most attention in the literature of network coding has been addressed to multicast in acyclic networks. The original paper on network coding [1] did consider cyclic networks but there it was suggested to transform the cyclic network into an acyclic network using the idea of unrolling the network into a layered network. This approach has many drawbacks: it achieves the optimal rate only asymptotically, it leads to time-variant schemes, it has high encoding and decoding complexities and it induces large delay. In [2] it was shown that if each edge in the network has delay, then there exists a time-invariant linear network code that achieves the optimal rate. This approach may, again, introduce large delay since each edge has delay and an efficient construction algorithm is not given. In [3] a heuristic code construction is given for a linear time-invariant code, but the construction is not given explicitly and it is not necessarily efficient. In this work we give an explicit polynomial time code construction of an optimal multicast linear network code for cyclic networks. As it turns out, it is not necessary for every edge in the network to have delay, as long as we ensure that in each cycle in the network at least one edge has delay. Since delay elements are anyway inserted into the network it seems more natural to focus on convolutional codes for cyclic networks. Nevertheless, our results in this paper are directly applicable for block codes.
منابع مشابه
Convolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملProvide a Deep Convolutional Neural Network Optimized with Morphological Filters to Map Trees in Urban Environments Using Aerial Imagery
Today, we cannot ignore the role of trees in the quality of human life, so that the earth is inconceivable for humans without the presence of trees. In addition to their natural role, urban trees are also very important in terms of visual beauty. Aerial imagery using unmanned platforms with very high spatial resolution is available today. Convolutional neural networks based deep learning method...
متن کاملConstructions of MDS-convolutional codes
Maximum-distance separable (MDS) convolutional codes are characterized through the property that the free distance attains the generalized singleton bound. The existence of MDS convolutional codes was established by two of the authors by using methods from algebraic geometry. This correspondence provides an elementary construction of MDS convolutional codes for each rate k/n and each degree δ. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005